JavaScript(ES6)
记录ES6一些新特性,新方法。
引用阮一峰大神的ECMAScript 6 入门
侵权请联系:bingkelele007@163.com
let与const
let
基本用法
ES6 新增了let
命令,用来声明变量。它的用法类似于var
,但是所声明的变量,只在let
命令所在的代码块内有效。
javascript
{
let a = 10;
var b = 1;
}
a // ReferenceError: a is not defined.
b // 1
上面代码在代码块之中,分别用let
和var
声明了两个变量。然后在代码块之外调用这两个变量,结果let
声明的变量报错,var
声明的变量返回了正确的值。这表明,let
声明的变量只在它所在的代码块有效。
不存在变量提升
var
命令会发生“变量提升”现象,即变量可以在声明之前使用,值为undefined
。这种现象多多少少是有些奇怪的,按照一般的逻辑,变量应该在声明语句之后才可以使用。
为了纠正这种现象,let
命令改变了语法行为,它所声明的变量一定要在声明后使用,否则报错。
javascript
// var 的情况
console.log(foo); // 输出undefined
var foo = 2;
// let 的情况
console.log(bar); // 报错ReferenceError
let bar = 2;
上面代码中,变量foo
用var
命令声明,会发生变量提升,即脚本开始运行时,变量foo
已经存在了,但是没有值,所以会输出undefined
。变量bar
用let
命令声明,不会发生变量提升。这表示在声明它之前,变量bar
是不存在的,这时如果用到它,就会抛出一个错误。
暂时性死区(TDZ)
只要块级作用域内存在let
命令,它所声明的变量就“绑定”(binding)这个区域,不再受外部的影响。
javascript
var tmp = 123;
if (true) {
tmp = 'abc'; // ReferenceError
let tmp;
}
上面代码中,存在全局变量tmp
,但是块级作用域内let
又声明了一个局部变量tmp
,导致后者绑定这个块级作用域,所以在let
声明变量前,对tmp
赋值会报错。
ES6 明确规定,如果区块中存在let
和const
命令,这个区块对这些命令声明的变量,从一开始就形成了封闭作用域。凡是在声明之前就使用这些变量,就会报错。
总之,在代码块内,使用let
命令声明变量之前,该变量都是不可用的。这在语法上,称为“暂时性死区”(temporal dead zone,简称 TDZ)。
另外,下面的代码也会报错,与var
的行为不同。
javascript
// 不报错
var x = x;
// 报错
let x = x;
// ReferenceError: x is not defined
上面代码报错,也是因为暂时性死区。使用let
声明变量时,只要变量在还没有声明完成前使用,就会报错。上面这行就属于这个情况,在变量x
的声明语句还没有执行完成前,就去取x
的值,导致报错”x 未定义“。
ES6 规定暂时性死区和let
、const
语句不出现变量提升,主要是为了减少运行时错误,防止在变量声明前就使用这个变量,从而导致意料之外的行为。这样的错误在 ES5 是很常见的,现在有了这种规定,避免此类错误就很容易了。
总之,暂时性死区的本质就是,只要一进入当前作用域,所要使用的变量就已经存在了,但是不可获取,只有等到声明变量的那一行代码出现,才可以获取和使用该变量。
不允许重复声明
let
不允许在相同作用域内,重复声明同一个变量。
javascript
// 报错
function func() {
let a = 10;
var a = 1;
}
// 报错
function func() {
let a = 10;
let a = 1;
}
因此,不能在函数内部重新声明参数。
javascript
function func(arg) {
let arg;
}
func() // 报错
function func(arg) {
{
let arg;
}
}
func() // 不报错
块级作用域
为什么需要块级作用域?
ES5 只有全局作用域和函数作用域,没有块级作用域,这带来很多不合理的场景。
- 内层变量可能会覆盖外层变量。
javascript
var tmp = new Date();
function f() {
console.log(tmp);
if (false) {
var tmp = 'hello world';
}
}
f(); // undefined
上面代码的原意是,if
代码块的外部使用外层的tmp
变量,内部使用内层的tmp
变量。但是,函数f
执行后,输出结果为undefined
,原因在于变量提升,导致内层的tmp
变量覆盖了外层的tmp
变量。
- 用来计数的循环变量泄露为全局变量。
javascript
var s = 'hello';
for (var i = 0; i < s.length; i++) {
console.log(s[i]);
}
console.log(i); // 5
上面代码中,变量i
只用来控制循环,但是循环结束后,它并没有消失,泄露成了全局变量。
ES6 的块级作用域
let
实际上为 JavaScript 新增了块级作用域。
javascript
function f1() {
let n = 5;
if (true) {
let n = 10;
}
console.log(n); // 5
}
上面的函数有两个代码块,都声明了变量n
,运行后输出 5。这表示外层代码块不受内层代码块的影响。如果两次都使用var
定义变量n
,最后输出的值才是 10。
ES6
允许块级作用域的任意嵌套。
javascript
{{{{
{let insane = 'Hello World'}
console.log(insane); // 报错
}}}};
上面代码使用了一个五层的块级作用域,每一层都是一个单独的作用域。第四层作用域无法读取第五层作用域的内部变量。
块级作用域与函数声明
函数能不能在块级作用域之中声明?这是一个相当令人混淆的问题。
ES5
规定,函数只能在顶层作用域和函数作用域之中声明,不能在块级作用域声明。
javascript
// 情况一
if (true) {
function f() {}
}
// 情况二
try {
function f() {}
} catch(e) {
// ...
}
上面两种函数声明,根据 ES5
的规定都是非法的。
但是!!,浏览器没有遵守这个规定,为了兼容以前的旧代码,还是支持在块级作用域之中声明函数,因此上面两种情况实际都能运行,不会报错。
所以ES6
在附录 B里面规定,浏览器的实现可以不遵守上面的规定,有自己的行为方式。
- 允许在块级作用域内声明函数。
- 函数声明类似于
var
,即会提升到全局作用域或函数作用域的头部。 - 同时,函数声明还会提升到所在的块级作用域的头部。
const
基本用法
const
声明一个只读的常量。一旦声明,常量的值就不能改变。常亮的变量名通常全是大写字母。
javascript
const PI = 3.1415;
PI // 3.1415
PI = 3;
// TypeError: Assignment to constant variable.
上面代码表明改变常量的值会报错。
const
声明的变量不得改变值,这意味着,const
一旦声明变量,就必须立即初始化,不能留到以后赋值。
javascript
const foo;
// SyntaxError: Missing initializer in const declaration
const
的作用域与let
命令相同:只在声明所在的块级作用域内有效。
javascript
if (true) {
const MAX = 5;
}
MAX // Uncaught ReferenceError: MAX is not defined
同时,const
与let
一样,也存在暂时性死区和不可重复声明
本质
const
实际上保证的,并不是变量的值不得改动,而是变量指向的那个内存地址所保存的数据不得改动。对于简单类型的数据(数值、字符串、布尔值),值就保存在变量指向的那个内存地址,因此等同于常量。但对于复合类型的数据(主要是对象和数组),变量指向的内存地址,保存的只是一个指向实际数据的指针,const
只能保证这个指针是固定的(即总是指向另一个固定的地址),至于它指向的数据结构是不是可变的,就完全不能控制了。因此,将一个对象声明为常量必须非常小心。
javascript
const foo = {};
// 为 foo 添加一个属性,可以成功
foo.prop = 123;
foo.prop // 123
// 将 foo 指向另一个对象,就会报错
foo = {}; // TypeError: "foo" is read-only
上面代码中,常量foo
储存的是一个地址,这个地址指向一个对象。不可变的只是这个地址,即不能把foo
指向另一个地址,但对象本身是可变的,所以依然可以为其添加新属性。
下面是另一个例子。
javascript
const a = [];
a.push('Hello'); // 可执行
a.length = 0; // 可执行
a = ['Dave']; // 报错
上面代码中,常量a
是一个数组,这个数组本身是可写的,但是如果将另一个数组赋值给a
,就会报错。
如果真的想将对象冻结,应该使用Object.freeze
方法。
javascript
const foo = Object.freeze({});
// 常规模式时,下面一行不起作用;
// 严格模式时,该行会报错
foo.prop = 123;
ES6 声明变量的六种方法
ES5 只有两种声明变量的方法:var
命令和function
命令。
ES6 新增了以下四种方式:
let
const
import
class
顶层对象的属性
顶层对象,在浏览器环境指的是window
对象,在 Node 指的是global
对象。ES5 之中,顶层对象的属性与全局变量是等价的。
javascript
window.a = 1;
a // 1
a = 2;
window.a // 2
上面代码中,顶层对象的属性赋值与全局变量的赋值,是同一件事。
顶层对象的属性与全局变量挂钩,被认为是 JavaScript 语言最大的设计败笔之一。这样的设计带来了几个很大的问题,首先是没法在编译时就报出变量未声明的错误,只有运行时才能知道(因为全局变量可能是顶层对象的属性创造的,而属性的创造是动态的);其次,程序员很容易不知不觉地就创建了全局变量(比如打字出错);最后,顶层对象的属性是到处可以读写的,这非常不利于模块化编程。另一方面,window
对象有实体含义,指的是浏览器的窗口对象,顶层对象是一个有实体含义的对象,也是不合适的。
ES6 为了改变这一点,一方面规定,为了保持兼容性,var
命令和function
命令声明的全局变量,依旧是顶层对象的属性;另一方面规定,let
命令、const
命令、class
命令声明的全局变量,不属于顶层对象的属性。也就是说,从 ES6 开始,全局变量将逐步与顶层对象的属性脱钩。
javascript
var a = 1;
// 如果在 Node 的 REPL 环境,可以写成 global.a
// 或者采用通用方法,写成 this.a
window.a // 1
let b = 1;
window.b // undefined
上面代码中,全局变量a
由var
命令声明,所以它是顶层对象的属性;全局变量b
由let
命令声明,所以它不是顶层对象的属性,返回undefined
。
globalThis 对象
JavaScript 语言存在一个顶层对象,它提供全局环境(即全局作用域),所有代码都是在这个环境中运行。但是,顶层对象在各种实现里面是不统一的。
- 浏览器里面,顶层对象是
window
,但 Node 和 Web Worker 没有window
。 - 浏览器和 Web Worker 里面,
self
也指向顶层对象,但是 Node 没有self
。 - Node 里面,顶层对象是
global
,但其他环境都不支持。
同一段代码为了能够在各种环境,都能取到顶层对象,现在一般是使用this
变量,但是有局限性。
- 全局环境中,
this
会返回顶层对象。但是,Node 模块和 ES6 模块中,this
返回的是当前模块。 - 函数里面的
this
,如果函数不是作为对象的方法运行,而是单纯作为函数运行,this
会指向顶层对象。但是,严格模式下,这时this
会返回undefined
。 - 不管是严格模式,还是普通模式,
new Function('return this')()
,总是会返回全局对象。但是,如果浏览器用了 CSP(Content Security Policy,内容安全策略),那么eval
、new Function
这些方法都可能无法使用。
综上所述,很难找到一种方法,可以在所有情况下,都取到顶层对象。下面是两种勉强可以使用的方法。
javascript
// 方法一
(typeof window !== 'undefined'
? window
: (typeof process === 'object' &&
typeof require === 'function' &&
typeof global === 'object')
? global
: this);
// 方法二
var getGlobal = function () {
if (typeof self !== 'undefined') { return self; }
if (typeof window !== 'undefined') { return window; }
if (typeof global !== 'undefined') { return global; }
throw new Error('unable to locate global object');
};
变量的解构赋值
数组的解构赋值
基本用法
ES6 允许按照一定模式,从数组和对象中提取值,对变量进行赋值,这被称为解构(Destructuring)。
以前,为变量赋值,只能直接指定值。
javascript
let a = 1;
let b = 2;
let c = 3;
ES6 允许写成下面这样。
javascript
let [a, b, c] = [1, 2, 3];
本质上,这种写法属于“模式匹配”,只要等号两边的模式相同,左边的变量就会被赋予对应的值。下面是一些使用嵌套数组进行解构的例子。
javascript
let [foo, [[bar], baz]] = [1, [[2], 3]];
foo // 1
bar // 2
baz // 3
let [ , , third] = ["foo", "bar", "baz"];
third // "baz"
let [x, , y] = [1, 2, 3];
x // 1
y // 3
let [head, ...tail] = [1, 2, 3, 4];
head // 1
tail // [2, 3, 4]
let [x, y, ...z] = ['a'];
x // "a"
y // undefined
z // []
如果解构不成功,变量的值就等于undefined
。
javascript
let [foo] = [];
let [bar, foo] = [1];
以上两种情况都属于解构不成功,foo
的值都会等于undefined
。
另一种情况是不完全解构,即等号左边的模式,只匹配一部分的等号右边的数组。这种情况下,解构依然可以成功。
javascript
let [x, y] = [1, 2, 3];
x // 1
y // 2
let [a, [b], d] = [1, [2, 3], 4];
a // 1
b // 2
d // 4
默认值
解构赋值允许指定默认值。
javascript
let [foo = true] = [];
foo // true
let [x, y = 'b'] = ['a']; // x='a', y='b'
let [x, y = 'b'] = ['a', undefined]; // x='a', y='b'
注意,ES6 内部使用严格相等运算符(===
),判断一个位置是否有值。所以,只有当一个数组成员严格等于undefined
,默认值才会生效。
javascript
let [x = 1] = [undefined];
x // 1
let [x = 1] = [null];
x // null
上面代码中,如果一个数组成员是null
,默认值就不会生效,因为null
不严格等于undefined
。
默认值可以引用解构赋值的其他变量,但该变量必须已经声明。
javascript
let [x = 1, y = x] = []; // x=1; y=1
let [x = 1, y = x] = [2]; // x=2; y=2
let [x = 1, y = x] = [1, 2]; // x=1; y=2
let [x = y, y = 1] = []; // ReferenceError: y is not defined
上面最后一个表达式之所以会报错,是因为x
用y
做默认值时,y
还没有声明。
对象的解构赋值
基本用法
解构不仅可以用于数组,还可以用于对象。
javascript
let { foo, bar } = { foo: 'aaa', bar: 'bbb' };
foo // "aaa"
bar // "bbb"
对象的解构与数组有一个重要的不同。数组的元素是按次序排列的,变量的取值由它的位置决定;而对象的属性没有次序,变量必须与属性同名,才能取到正确的值。
javascript
let { bar, foo } = { foo: 'aaa', bar: 'bbb' };
foo // "aaa"
bar // "bbb"
let { baz } = { foo: 'aaa', bar: 'bbb' };
baz // undefined
上面代码的第一个例子,等号左边的两个变量的次序,与等号右边两个同名属性的次序不一致,但是对取值完全没有影响。第二个例子的变量没有对应的同名属性,导致取不到值,最后等于undefined
。
如果解构失败,变量的值等于undefined
。
javascript
let {foo} = {bar: 'baz'};
foo // undefined
解构重命名
我们可以把解构出来的变量名重新起个名
javascript
let { foo: baz } = { foo: 'aaa', bar: 'bbb' };
baz // "aaa"
let obj = { first: 'hello', last: 'world' };
let { first: f, last: l } = obj;
f // 'hello'
l // 'world'
上面第一个例子,我们把foo
解构出来以后,重新命名为baz
,所以baz
的值等于"aaa"
注意,对象的解构赋值可以取到继承的属性。
javascript
const obj1 = {};
const obj2 = { foo: 'bar' };
Object.setPrototypeOf(obj1, obj2);
const { foo } = obj1;
foo // "bar"
上面代码中,对象obj1
的原型对象是obj2
。foo
属性不是obj1
自身的属性,而是继承自obj2
的属性,解构赋值可以取到这个属性。
默认值
对象的解构也可以指定默认值。
javascript
var {x = 3} = {};
x // 3
var {x, y = 5} = {x: 1};
x // 1
y // 5
var {x: y = 3} = {};
y // 3
var {x: y = 3} = {x: 5};
y // 5
var { message: msg = 'Something went wrong' } = {};
msg // "Something went wrong"
默认值生效的条件是,对象的属性值严格等于undefined
。
javascript
var {x = 3} = {x: undefined};
x // 3
var {x = 3} = {x: null};
x // null
上面代码中,属性x
等于null
,因为null
与undefined
不严格相等,所以是个有效的赋值,导致默认值3
不会生效。
注意点
- 如果要将一个已经声明的变量用于解构赋值,必须非常小心。
javascript
// 错误的写法
let x;
{x} = {x: 1};
// SyntaxError: syntax error
上面代码的写法会报错,因为 JavaScript 引擎会将{x}
理解成一个代码块,从而发生语法错误。只有不将大括号写在行首,避免 JavaScript 将其解释为代码块,才能解决这个问题。
javascript
// 正确的写法
let x;
({x} = {x: 1});
上面代码将整个解构赋值语句,放在一个圆括号里面,就可以正确执行。关于圆括号与解构赋值的关系,参见下文。
- 解构赋值允许等号左边的模式之中,不放置任何变量名。因此,可以写出非常古怪的赋值表达式。
javascript
({} = [true, false]);
({} = 'abc');
({} = []);
上面的表达式虽然毫无意义,但是语法是合法的,可以执行。
- 由于数组本质是特殊的对象,因此可以对数组进行对象属性的解构。
javascript
let arr = [1, 2, 3];
let {0 : first, [arr.length - 1] : last} = arr;
first // 1
last // 3
上面代码对数组进行对象解构。数组arr
的0
键对应的值是1
,[arr.length - 1]
就是2
键,对应的值是3
字符串的解构赋值
字符串也可以解构赋值。这是因为此时,字符串被转换成了一个类似数组的对象。
javascript
const [a, b, c, d, e] = 'hello';
a // "h"
b // "e"
c // "l"
d // "l"
e // "o"
类似数组的对象都有一个length
属性,因此还可以对这个属性解构赋值。
javascript
let {length : len} = 'hello';
len // 5
数值和布尔值的解构赋值
解构赋值时,如果等号右边是数值和布尔值,则会先转为对象。
javascript
let {toString: s} = 123;
s === Number.prototype.toString // true
let {toString: s} = true;
s === Boolean.prototype.toString // true
上面代码中,数值和布尔值的包装对象都有toString
属性,因此变量s
都能取到值。
解构赋值的规则是,只要等号右边的值不是对象或数组,就先将其转为对象。由于undefined
和null
无法转为对象,所以对它们进行解构赋值,都会报错。
javascript
let { prop: x } = undefined; // TypeError
let { prop: y } = null; // TypeError
函数参数的解构赋值
函数的参数也可以使用解构赋值。
javascript
function add([x, y]){
return x + y;
}
add([1, 2]); // 3
上面代码中,函数add
的参数表面上是一个数组,但在传入参数的那一刻,数组参数就被解构成变量x
和y
。对于函数内部的代码来说,它们能感受到的参数就是x
和y
。
下面是另一个例子。
javascript
[[1, 2], [3, 4]].map(([a, b]) => a + b);
// [ 3, 7 ]
函数参数的解构也可以使用默认值。
javascript
function move({x = 0, y = 0} = {}) {
return [x, y];
}
move({x: 3, y: 8}); // [3, 8]
move({x: 3}); // [3, 0]
move({}); // [0, 0]
move(); // [0, 0]
上面代码中,函数move
的参数是一个对象,通过对这个对象进行解构,得到变量x
和y
的值。如果解构失败,x
和y
等于默认值。
用途
变量的解构赋值用途很多。
- 交换变量的值
javascript
let x = 1;
let y = 2;
[x, y] = [y, x];
上面代码交换变量x
和y
的值,这样的写法不仅简洁,而且易读,语义非常清晰。
- 从函数返回多个值
函数只能返回一个值,如果要返回多个值,只能将它们放在数组或对象里返回。有了解构赋值,取出这些值就非常方便。
javascript
// 返回一个数组
function example() {
return [1, 2, 3];
}
let [a, b, c] = example();
// 返回一个对象
function example() {
return {
foo: 1,
bar: 2
};
}
let { foo, bar } = example();
- 提取 JSON 数据
解构赋值对提取 JSON 对象中的数据,尤其有用。
javascript
let jsonData = {
id: 42,
status: "OK",
data: [867, 5309]
};
let { id, status, data: number } = jsonData;
console.log(id, status, number);
// 42, "OK", [867, 5309]
- 函数参数的默认值
javascript
jQuery.ajax = function (url, {
async = true,
beforeSend = function () {},
cache = true,
complete = function () {},
crossDomain = false,
global = true,
// ... more config
} = {}) {
// ... do stuff
};
指定参数的默认值,就避免了在函数体内部再写var foo = config.foo || 'default foo';
这样的语句。
- 输入模块的指定方法
加载模块时,往往需要指定输入哪些方法。解构赋值使得输入语句非常清晰。
javascript
const { SourceMapConsumer, SourceNode } = require("source-map");
- 遍历 Map 结构
任何部署了 Iterator 接口的对象,都可以用for...of
循环遍历。Map 结构原生支持 Iterator 接口,配合变量的解构赋值,获取键名和键值就非常方便。
javascript
const map = new Map();
map.set('first', 'hello');
map.set('second', 'world');
for (let [key, value] of map) {
console.log(key + " is " + value);
}
// first is hello
// second is world
如果只想获取键名,或者只想获取键值,可以写成下面这样。
javascript
// 获取键名
for (let [key] of map) {
// ...
}
// 获取键值
for (let [,value] of map) {
// ...
}
Promise
什么是 Promise?
Promise
是JavaScript
编程ES6
中新增的对象,是用于异步编程的解决方案,最早由社区提出。Promise/A+
规范是JavaScript
Promise
的标准,规定了一个Promise
所必须具备的特性
Promise 详解
Promise
是一个构造函数,接收一个函数作为参数,返回一个Promise
实例,一个Promise
实例中有三种状态,分别是pending
、resolved
和rejected
,分别代表进行中
、已成功
和已失败
。实例的状态只能由pending
转变resolved
或者rejected
状态,并且状态一经改变,就凝固了,无法再被改变了。状态的改变时通过resolve()
和reject()
函数来实现的,我们可以在异步操作结束后调用这两个函数来改变Promise
实例的状态,它的原型上定义了一个then
方法,使用这个then
方法可以为两个状态的改变注册回调函数。这个回调函数属于微任务,会在本轮事件循环的末尾执行。
Promise 的特点
- 对象的状态不受外界影响。
Promise
对象代表一个异步操作。只有异步操作的结果,可以决定当前是哪一种状态,任何其他操作都无法改变这个状态。这也是 Promise 这个名字的由来,它的英语意思就是“承诺”,表示其他手段无法改变。 - 一旦状态改变,就不会再变,任何时候都可以得到这个结果。
Promise
对象的状态改变,只有两种可能:从pending
变为fulfilled
和从pending
变为rejected
。只要这两种情况发生,状态就凝固了,不会再变了,会一直保持这个结果,这时就称为resolved
(已定型)。如果改变已经发生了,你再对Promise
对象添加回调函数,也会立即得到这个结果。这与事件(Event)完全不同,事件的特点是,如果你错过了它,再去监听,是得不到结果的。
Promise 的缺点
- 一旦执行,则无法取消
- 如果不设置回调函数,
Promise
内部抛出的错误,不会反应到外部 - 当处于
pending
状态时,无法得知目前进展到哪一阶段
Promise 的基本用法
下面代码创建了一个 Promise
实例
js
const promise = new Promise(function(resolve, reject) {
// ... some code
if (/* 异步操作成功 */){
resolve(value);
} else {
reject(error);
}
});
Promise
构造函数接受一个函数作为参数,该函数的两个参数分别是resolve
和reject
。它们是两个函数,由 JavaScript
引擎提供,不用自己部署。 resolve
函数的作用是,将Promise
对象的状态从“未完成”变为“成功”(即从 pending
变为 resolved
),在异步操作成功时调用,并将异步操作的结果,作为参数传递出去;reject
函数的作用是,将Promise
对象的状态从“未完成”变为“失败”(即从 pending
变为 rejected
),在异步操作失败时调用,并将异步操作报出的错误,作为参数传递出去。
Promise
实例生成以后,可以用then
方法分别指定resolved
状态和rejected
状态的回调函数。
js
promise.then(
function (value) {
// success
},
function (error) {
// failure
}
);
then
方法可以接受两个回调函数作为参数。第一个回调函数是Promise
对象的状态变为resolved
时调用,第二个回调函数是Promise
对象的状态变为rejected
时调用。其中,第二个函数是可选的,不一定要提供。这两个函数都接受 Promise
对象传出的值作为参数。所以 then 方法中也可以捕获异常!Promise
新建后就会立即执行。
js
let promise = new Promise(function (resolve, reject) {
console.log('Promise');
resolve();
});
promise.then(function () {
console.log('resolved.');
});
console.log('Hi!');
// Promise
// Hi!
// resolved
上面代码中,Promise
新建后立即执行,所以首先输出的是Promise
。然后,then
方法指定的回调函数,将在当前脚本所有同步任务执行完才会执行,所以resolved
最后输出。
Promise 的原型方法
Promise.prototype.then()
Promise
实例具有then
方法,也就是说,then
方法是定义在原型对象Promise.prototype
上的。它的作用是为
Promise
实例添加状态改变时的回调函数。前面说过,then
方法的第一个参数是resolved
状态的回调函数,第二个参数(可选)是rejected
状态的回调函数。then
方法返回的是一个新的Promise
实例(注意,不是原来那个Promise
实例)。因此可以采用链式写法,即then
方法后面再调用另一个then
方法。jsgetJSON('/posts.json') .then(function (json) { return json.post; }) .then(function (post) { // ... });
Promise.prototype.catch()
Promise.prototype.catch()
方法是.then(null, rejection)
或.then(undefined, rejection)
的别名,用于指定发生错误时的回调函数。jsgetJSON('/posts.json') .then(function (posts) { // ... }) .catch(function (error) { // 处理 getJSON 和 前一个回调函数运行时发生的错误 console.log('发生错误!', error); });
上面代码中,
getJSON()
方法返回一个Promise
对象,如果该对象状态变为resolved
,则会调用then()
方法指定的回调函数;如果异步操作抛出错误,状态就会变为rejected
,就会调用catch()
方法指定的回调函数,处理这个错误。另外,then()
方法指定的回调函数,如果运行中抛出错误,也会被catch()
方法捕获。 一般总是建议,Promise
对象后面要跟catch()
方法,这样可以处理Promise
内部发生的错误。catch()
方法返回的还是一个Promise
对象,因此后面还可以接着调用then()
方法。Promise.prototype.finally()
finally()
方法用于指定不管Promise
对象最后状态如何,都会执行的操作。该方法是ES2018
引入标准的。jspromise .then(result => {···}) .catch(error => {···}) .finally(() => {···});
上面代码中,不管
promise
最后的状态,在执行完then
或catch
指定的回调函数以后,都会执行finally
方法指定的回调函数。
Promise 对象方法
Promise.all()
Promise.all()
方法用于将多个Promise
实例,包装成一个新的Promise
实例。只有这传入所有的实例的状态都变成fulfilled
,或者其中有一个变为rejected(失败)
,才会调用Promise.all
方法后面的回调函数。jsconst p1 = new Promise((resolve, reject) => { resolve('hello'); }) .then((result) => result) .catch((e) => e); const p2 = new Promise((resolve, reject) => { throw new Error('报错了'); }) .then((result) => result) .catch((e) => e); Promise.all([p1, p2]) .then((result) => console.log(result)) .catch((e) => console.log(e)); // ["hello", Error: 报错了]
上面代码中,
p1
会resolved
,p2
首先会rejected
,但是p2
有自己的catch
方法,该方法返回的是一个新的 Promise 实例,p2
指向的实际上是这个实例。该实例执行完catch
方法后,也会变成resolved
,导致Promise.all()
方法参数里面的两个实例都会resolved
,因此会调用then
方法指定的回调函数,而不会调用catch
方法指定的回调函数。 注:如果p2
没有自己的catch
方法,就会调用Promise.all()
的catch
方法。Promise.race()
Promise.race()
方法同样是将多个 Promise 实例,包装成一个新的 Promise 实例。javascriptconst p = Promise.race([p1, p2, p3]);
上面代码中,只要
p1
、p2
、p3
之中有一个实例率先改变状态,p
的状态就跟着改变。那个率先改变的 Promise 实例的返回值,就传递给p
的回调函数。javascriptconst p = Promise.race([ fetch('/resource-that-may-take-a-while'), new Promise(function (resolve, reject) { setTimeout(() => reject(new Error('request timeout')), 5000); }), ]); p.then(console.log).catch(console.error);
上面代码中,如果 5 秒之内
fetch
方法无法返回结果,变量p
的状态就会变为rejected
,从而触发catch
方法指定的回调函数。Promise.allSettled()
Promise.allSettled()
方法接受一组 Promise 实例作为参数,包装成一个新的Promise
实例。只有等到所有这些参数实例都返回结果,不管是fulfilled
还是rejected
,包装实例才会结束。该方法由 ES2020 引入。有时候,我们不关心异步操作的结果,只关心这些操作有没有结束。这时,
Promise.allSettled()
方法就很有用。如果没有这个方法,想要确保所有操作都结束,就很麻烦。Promise.all()
方法无法做到这一点。jsconst resolved = Promise.resolve(42); const rejected = Promise.reject(-1); const allSettledPromise = Promise.allSettled([resolved, rejected]); allSettledPromise.then(function (results) { console.log(results); }); // [ // { status: 'fulfilled', value: 42 }, // { status: 'rejected', reason: -1 } // ]
Promise.any()
Promise.any()
方法接受一组 Promise 实例作为参数,包装成一个新的 Promise 实例。只要参数实例有一个变成fulfilled
状态,包装实例就会变成fulfilled
状态;如果所有参数实例都变成rejected
状态,包装实例就会变成rejected
状态。该方法目前是一个第三阶段的提案 。Promise.any()
跟Promise.race()
方法很像,只有一点不同,就是不会因为某个 Promise 变成rejected
状态而结束。javascriptconst promises = [ fetch('/endpoint-a').then(() => 'a'), fetch('/endpoint-b').then(() => 'b'), fetch('/endpoint-c').then(() => 'c'), ]; try { const first = await Promise.any(promises); console.log(first); } catch (error) { console.log(error); }
上面代码中,
Promise.any()
方法的参数数组包含三个 Promise 操作。其中只要有一个变成fulfilled
,Promise.any()
返回的 Promise 对象就变成fulfilled
。如果所有三个操作都变成rejected
,那么await
命令就会抛出错误。Promise.resolve()
有时需要将现有对象转为
Promise
对象,Promise.resolve()
方法就起到这个作用。javascriptconst jsPromise = Promise.resolve($.ajax('/whatever.json'));
上面代码将 jQuery 生成的
deferred
对象,转为一个新的 Promise 对象。Promise.resolve()
等价于下面的写法。javascriptPromise.resolve('foo'); // 等价于 new Promise((resolve) => resolve('foo'));
Promise.reject()
Promise.reject(reason)
方法也会返回一个新的 Promise 实例,该实例的状态为rejected
。javascriptconst p = Promise.reject('出错了'); // 等同于 const p = new Promise((resolve, reject) => reject('出错了')); p.then(null, function (s) { console.log(s); }); // 出错了
上面代码生成一个
Promise
对象的实例p
,状态为rejected
,回调函数会立即执行。
手写 Promise
js
const PENDING = 'pengding';
const RESOLVED = 'resolved';
const REJECTED = 'rejected';
function MyPromise(fn) {
// 保存初始状态
var self = this;
// 初始化状态
this.state = PENDING;
// 用于保存resolve 或者 rejected 传入的值
this.value = null;
// 用于保存 resolve 的回调函数
this.resolvedCallbacks = [];
// 用于保存 reject 的回调函数
this.rejectedCallbacks = [];
// 状态转变为resolved 方法
function resolve(value) {
// 判断传入的元素是否为Promise 值,如果是,则改变状态必须等待前一个状态改变后在进行改变
if (value instanceof MyPromise) {
return value.then(resolve, reject);
}
// 保证代码的执行顺序为本轮事件循环的末尾
setTimeout(() => {
// 只有状态为pending 时才能转变
if (self.state === PENDING) {
// 修改状态
self.state = RESOLVED;
//修改传入的值
self.value = value;
// 执行回调函数
self.resolvedCallbacks.forEach((callbakc) => {
callback(value);
});
}
}, 0);
}
// 状态转变为 rejected 时的方法
function reject(value) {
// 保证代码的执行顺序为本轮事件循环的末尾
setTimeout(() => {
// 只有状态为pending 时才能转变
if (self.state === PENDING) {
// 修改状态
self.state = REJECTED;
// 设置传入的值
self.value = value;
// 执行回调函数
self.rejectedCallbacks.forEach((callback) => {
callback(value);
});
}
}, 0);
}
// 将两个方法传入函数执行
try {
fn(resolve, reject);
} catch (e) {
reject(e);
}
}
MyPromise.prototype.then = function (onResolved, onRejected) {
// 首先判断两个参数是否为函数类型,因为这两个参数是可选参数
onResolved =
typeof onResolved === 'function'
? onResolved
: function (value) {
return value;
};
onRejected =
typeof onRejected === 'function'
? onRejected
: function (error) {
throw error;
};
// 如果是等待状态,则将函数加入到对应列表中
if (this.state === PENDING) {
this.resolvedCallbacks.push(onResolved);
this.rejectedCallbacks.push(onRejected);
}
// 如果状态已经凝固,则直接执行对应状态的函数
if (this.state === RESOLVED) {
onResolved(this.value);
}
if (this.state === REJECTED) {
onRejected(this.value);
}
};